Large Language Models (LLMs) have transformed software development, enabling AI-powered applications known as LLM-based agents that promise to automate tasks across diverse apps and workflows. Yet, the security implications of deploying such agents in adversarial mobile environments remain poorly understood. In this paper, we present the first systematic study of security risks in mobile LLM agents. We design and evaluate a suite of adversarial case studies, ranging from opportunistic manipulations such as pop-up advertisements to advanced, end-to-end workflows involving malware installation and cross-app data exfiltration. Our evaluation covers eight state-of-the-art mobile agents across three architectures, with over 2,000 adversarial and paired benign trials. The results reveal systemic vulnerabilities: low-barrier vectors such as fraudulent ads succeed with over 80% reliability, while even workflows requiring the circumvention of operating-system warnings, such as malware installation, are consistently completed by advanced multi-app agents. By mapping these attacks to the MITRE ATT&CK Mobile framework, we uncover novel privilege-escalation and persistence pathways unique to LLM-driven automation. Collectively, our findings provide the first end-to-end evidence that mobile LLM agents are exploitable in realistic adversarial settings, where untrusted third-party channels (e.g., ads, embedded webviews, cross-app notifications) are an inherent part of the mobile ecosystem.
翻译:大型语言模型(LLMs)已变革了软件开发,催生了被称为基于LLM的智能体的AI驱动应用,这些应用有望在不同应用与工作流中实现任务自动化。然而,在对抗性移动环境中部署此类智能体的安全影响仍鲜为人知。本文首次对移动端LLM智能体的安全风险进行了系统性研究。我们设计并评估了一系列对抗性案例研究,范围从机会性操纵(如弹窗广告)到涉及恶意软件安装与跨应用数据窃取的高级端到端工作流。我们的评估覆盖了三种架构下的八种前沿移动智能体,进行了超过2000次对抗性与配对的良性试验。结果揭示了系统性漏洞:低门槛攻击向量(如欺诈广告)的成功率超过80%,而即使是需要绕过操作系统警告的工作流(如恶意软件安装),也能被高级多应用智能体持续完成。通过将这些攻击映射到MITRE ATT&CK Mobile框架,我们发现了LLM驱动自动化所特有的新型权限提升与持久化路径。总体而言,我们的研究首次提供了端到端证据,表明移动端LLM智能体在现实的对抗性环境中是可被利用的,其中不可信的第三方渠道(如广告、嵌入式网页视图、跨应用通知)是移动生态系统的固有组成部分。