Wi-Fi/RF-based human sensing has achieved remarkable progress with deep learning, yet practical deployments increasingly require feature sharing for cloud analytics, collaborative training, or benchmark evaluation. Releasing intermediate representations such as CSI spectrograms can inadvertently expose sensitive information, including user identity, location, and membership, motivating formal privacy guarantees. In this paper, we study differentially private (DP) feature release for wireless sensing and propose an adaptive privacy budget allocation mechanism tailored to the highly non-uniform structure of CSI time-frequency representations. Our pipeline converts CSI to bounded spectrogram features, applies sensitivity control via clipping, estimates task-relevant importance over the time-frequency plane, and allocates a global privacy budget across spectrogram blocks before injecting calibrated Gaussian noise. Experiments on multi-user activity sensing (WiMANS), multi-person 3D pose estimation (Person-in-WiFi 3D), and respiration monitoring (Resp-CSI) show that adaptive allocation consistently improves the privacy-utility frontier over uniform perturbation under the same privacy budget. Our method yields higher accuracy and lower error while substantially reducing empirical leakage in identity and membership inference attacks.
翻译:基于Wi-Fi/射频的人体感知技术借助深度学习已取得显著进展,然而实际部署中越来越需要为云端分析、协同训练或基准评估而共享特征。发布如CSI频谱图等中间表征可能无意中暴露敏感信息,包括用户身份、位置及成员关系,这促使了形式化隐私保障的需求。本文研究无线感知中的差分隐私特征发布,并提出一种自适应隐私预算分配机制,该机制专门针对CSI时频表征的高度非均匀结构设计。我们的流程将CSI转换为有界频谱图特征,通过裁剪实现敏感度控制,在时频平面上估计任务相关重要性,并在注入校准高斯噪声前将全局隐私预算分配到频谱图块中。在多用户活动感知(WiMANS)、多人三维姿态估计(Person-in-WiFi 3D)及呼吸监测(Resp-CSI)上的实验表明,在相同隐私预算下,自适应分配相比均匀扰动能持续提升隐私-效用边界。我们的方法在身份与成员推理攻击中显著降低经验泄漏的同时,获得了更高的准确率与更低的误差。