While working with fingerprint images acquired from crime scenes, mobile cameras, or low-quality sensors, it becomes difficult for automated identification systems to verify the identity due to image blur and distortion. We propose a fingerprint deblurring model FDeblur-GAN, based on the conditional Generative Adversarial Networks (cGANs) and multi-stage framework of the stack GAN. Additionally, we integrate two auxiliary sub-networks into the model for the deblurring task. The first sub-network is a ridge extractor model. It is added to generate ridge maps to ensure that fingerprint information and minutiae are preserved in the deblurring process and prevent the model from generating erroneous minutiae. The second sub-network is a verifier that helps the generator to preserve the ID information during the generation process. Using a database of blurred fingerprints and corresponding ridge maps, the deep network learns to deblur from the input blurry samples. We evaluate the proposed method in combination with two different fingerprint matching algorithms. We achieved an accuracy of 95.18% on our fingerprint database for the task of matching deblurred and ground truth fingerprints.
翻译:在使用从犯罪现场、移动相机或低质量传感器获得的指纹图像的同时,由于图像模糊和扭曲,自动身份识别系统难以核实身份。我们提议基于有条件的Genemental Aversarial网络(cGANs)和堆叠GAN多阶段框架的FDeblur-GAN指纹分流模型FDeblur-GAN。此外,我们将两个辅助子网络纳入拆散任务模型。第一个子网络是一个脊脊提取模型。添加该子网络是为了生成脊柱图,以确保指纹信息和细微图在拆解过程中得到保存,防止模型产生错误的细微粒。第二个子网络是一个验证器,帮助生成者在生成过程中保存身份信息。利用一个模糊的指纹数据库和相应的脊柱图,深网络学会从输入的模糊样本中解密。我们用两种不同的指纹匹配算法对拟议方法进行了评估。我们在指纹数据库上实现了95.18%的准确度,用于匹配脱布拉里和地面的真迹。