For two graphs $G_1$ and $G_2$ on the same vertex set $[n]:=\{1,2, \ldots, n\}$, and a permutation $\varphi$ of $[n]$, the union of $G_1$ and $G_2$ along $\varphi$ is the graph which is the union of $G_2$ and the graph obtained from $G_1$ by renaming its vertices according to $\varphi$. We examine the behaviour of the treewidth and pathwidth of graphs under this "gluing" operation. We show that under certain conditions on $G_1$ and $G_2$, we may bound those parameters for such unions in terms of their values for the original graphs, regardless of what permutation $\varphi$ we choose. In some cases, however, this is only achievable if $\varphi$ is chosen carefully, while yet in others, it is always impossible to achieve boundedness. More specifically, among other results, we prove that if $G_1$ has treewidth $k$ and $G_2$ has pathwidth $\ell$, then they can be united into a graph of treewidth at most $k + 3 \ell + 1$. On the other hand, we show that for any natural number $c$ there exists a pair of trees $G_1$ and $G_2$ whose every union has treewidth more than $c$.
翻译:对于同一顶端的两张G$_1美元和G$2美元($@n):_1,2,rdots, n ⁇ $, 和以$$为单位的平方美元, 美元和2美元之联盟是1G$1美元和2G$美元的组合, 和以美元为单位的平方美元图, 这是G$2的组合, 和以美元为单位从G$1美元获得的图。 我们检查了在“ gluing”操作下的树枝和图条的行为。 我们显示,在某些条件下, $1美元和$2美元为单位的平方美元, 我们可以用原始图形的数值来约束这些联盟的参数, 不论我们选择了多少平方美元。 但是, 在某些情况中, 只有按美元来仔细选择, 美元, 而在另一些情况下, 总是无法达到界限。 更具体地说, 美元 美元 美元 美元 和 美元 美元是每平方$。