The task of image segmentation is inherently noisy due to ambiguities regarding the exact location of boundaries between anatomical structures. We argue that this information can be extracted from the expert annotations at no extra cost, and when integrated into state-of-the-art neural networks, it can lead to improved calibration between soft probabilistic predictions and the underlying uncertainty. We built upon label smoothing (LS) where a network is trained on 'blurred' versions of the ground truth labels which has been shown to be effective for calibrating output predictions. However, LS is not taking the local structure into account and results in overly smoothed predictions with low confidence even for non-ambiguous regions. Here, we propose Spatially Varying Label Smoothing (SVLS), a soft labeling technique that captures the structural uncertainty in semantic segmentation. SVLS also naturally lends itself to incorporate inter-rater uncertainty when multiple labelmaps are available. The proposed approach is extensively validated on four clinical segmentation tasks with different imaging modalities, number of classes and single and multi-rater expert annotations. The results demonstrate that SVLS, despite its simplicity, obtains superior boundary prediction with improved uncertainty and model calibration.


翻译:由于对解剖结构之间界线的确切位置含糊不清,图像分解的任务本身就十分繁杂。我们争辩说,这种信息可以不增加费用地从专家说明中提取,而无需增加任何额外的费用。当它被纳入最新神经网络时,它可以改进软概率预测和潜在不确定性之间的校准。我们以光滑标签(LS)为基础,在光滑标签上对一个网络进行了关于“blured”版本的地面真象标签的培训,事实证明它对于校准输出预测是有效的。然而,LS没有考虑到当地结构,并且导致即使对不矛盾的区域也缺乏信心地作出过于平滑的预测。在这里,我们提议了空间性Varying Label滑动(SVLS),这是一种软标签技术,可以捕捉语义分解结构上的不确定性。SVLS还自然地在有多个标签图时,能够纳入跨线的不确定性。拟议的方法在四种临床分解任务上得到广泛验证,有不同的成像模式、班数以及单一和多位模型专家说明。结果显示,尽管SLVLS的精确度得到改进了精确度预测。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
下载 | 114页自监督学习指南【PPT By Yann Lecun】
机器学习算法与Python学习
4+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年6月7日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
下载 | 114页自监督学习指南【PPT By Yann Lecun】
机器学习算法与Python学习
4+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员