Lesion segmentation requires both speed and accuracy. In this paper, we propose a simple yet efficient network DSNet, which consists of a encoder based on Transformer and a convolutional neural network(CNN)-based distinct pyramid decoder containing three dual-stream attention (DSA) modules. Specifically, the DSA module fuses features from two adjacent levels through the false positive stream attention (FPSA) branch and the false negative stream attention (FNSA) branch to obtain features with diversified contextual information. We compare our method with various state-of-the-art (SOTA) lesion segmentation methods with several public datasets, including CVC-ClinicDB, Kvasir-SEG, and ISIC-2018 Task 1. The experimental results show that our method achieves SOTA performance in terms of mean Dice coefficient (mDice) and mean Intersection over Union (mIoU) with low model complexity and memory consumption.
翻译:在本文中,我们提出了一个简单而高效的网络DSNet, 由基于变异器和以进化神经网络(CNN)为基础的不同金字塔解码器组成,包含三个双流关注模块。具体地说,DSA模块通过假正流关注分支和假负流关注分支,从两个相邻层面导出两个相邻层面的特性,以获取多种背景信息的特征。我们将我们的方法与各种最新技术(SOTA)的对流分离方法与若干公共数据集,包括CVC-ClinicDB、Kvasir-SEG和ICS-2018任务1, 实验结果显示,我们的方法在模型复杂度低和记忆消耗量低的平均值Dice系数(mDice)和中间值中,实现了SOTA的性能。