In this paper, we propose a Riemannian Acceleration with Preconditioning (RAP) for symmetric eigenvalue problems, which is one of the most important geodesically convex optimization problem on Riemannian manifold, and obtain the acceleration. Firstly, the preconditioning for symmetric eigenvalue problems from the Riemannian manifold viewpoint is discussed. In order to obtain the local geodesic convexity, we develop the leading angle to measure the quality of the preconditioner for symmetric eigenvalue problems. A new Riemannian acceleration, called Locally Optimal Riemannian Accelerated Gradient (LORAG) method, is proposed to overcome the local geodesic convexity for symmetric eigenvalue problems. With similar techniques for RAGD and analysis of local convex optimization in Euclidean space, we analyze the convergence of LORAG. Incorporating the local geodesic convexity of symmetric eigenvalue problems under preconditioning with the LORAG, we propose the Riemannian Acceleration with Preconditioning (RAP) and prove its acceleration. Additionally, when the Schwarz preconditioner, especially the overlapping or non-overlapping domain decomposition method, is applied for elliptic eigenvalue problems, we also obtain the rate of convergence as $1-C\kappa^{-1/2}$, where $C$ is a constant independent of the mesh sizes and the eigenvalue gap, $\kappa=\kappa_{\nu}\lambda_{2}/(\lambda_{2}-\lambda_{1})$, $\kappa_{\nu}$ is the parameter from the stable decomposition, $\lambda_{1}$ and $\lambda_{2}$ are the smallest two eigenvalues of the elliptic operator. Numerical results show the power of Riemannian acceleration and preconditioning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员