With the development of industry, drones are appearing in various field. In recent years, deep reinforcement learning has made impressive gains in games, and we are committed to applying deep reinforcement learning algorithms to the field of robotics, moving reinforcement learning algorithms from game scenarios to real-world application scenarios. We are inspired by the LunarLander of OpenAI Gym, we decided to make a bold attempt in the field of reinforcement learning to control drones. At present, there is still a lack of work applying reinforcement learning algorithms to robot control, the physical simulation platform related to robot control is only suitable for the verification of classical algorithms, and is not suitable for accessing reinforcement learning algorithms for the training. In this paper, we will face this problem, bridging the gap between physical simulation platforms and intelligent agent, connecting intelligent agents to a physical simulation platform, allowing agents to learn and complete drone flight tasks in a simulator that approximates the real world. We proposed a reinforcement learning framework based on Gazebo that is a kind of physical simulation platform (ROS-RL), and used three continuous action space reinforcement learning algorithms in the framework to dealing with the problem of autonomous landing of drones. Experiments show the effectiveness of the algorithm, the task of autonomous landing of drones based on reinforcement learning achieved full success.


翻译:随着产业的发展,无人驾驶飞机正在各种领域出现。近年来,深度强化学习在游戏领域取得了令人印象深刻的成绩。近年来,深度强化学习在游戏中取得了令人印象深刻的成绩,我们致力于在机器人领域应用深度强化学习算法,将强化学习算法从游戏场景转向现实世界应用。我们受到OpenAI Gym的Lunarlandander的启发,我们决定在强化学习领域大胆尝试控制无人驾驶飞机。目前,仍然缺乏将强化学习算法应用于机器人控制的强化算法,与机器人控制有关的物理模拟平台仅适合验证经典算法,而不适合获取强化学习算法用于培训。在本文件中,我们将面对这一问题,弥合物理模拟平台和智能代理商之间的差距,将智能代理商与物理模拟平台联系起来,让代理商在接近现实世界的模拟器中学习和完成无人驾驶飞机飞行任务。我们提议了一个基于Gazebo的强化学习框架,这是一种物理模拟平台(ROS-RL),并使用三种持续操作空间强化空间学习算法,用于应对自动模拟平台的自动着陆的自动着陆问题,以展示自动飞行器的自动着陆成功飞行的成功。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年10月20日
Arxiv
66+阅读 · 2022年4月13日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员