With the explosive growth of new graduates with research degrees every year, unprecedented challenges arise for early-career researchers to find a job at a suitable institution. This study aims to understand the behavior of academic job transition and hence recommend suitable institutions for PhD graduates. Specifically, we design a deep learning model to predict the career move of early-career researchers and provide suggestions. The design is built on top of scholarly/academic networks, which contains abundant information about scientific collaboration among scholars and institutions. We construct a heterogeneous scholarly network to facilitate the exploring of the behavior of career moves and the recommendation of institutions for scholars. We devise an unsupervised learning model called HAI (Heterogeneous graph Attention InfoMax) which aggregates attention mechanism and mutual information for institution recommendation. Moreover, we propose scholar attention and meta-path attention to discover the hidden relationships between several meta-paths. With these mechanisms, HAI provides ordered recommendations with explainability. We evaluate HAI upon a real-world dataset against baseline methods. Experimental results verify the effectiveness and efficiency of our approach.
翻译:随着每年具有研究学位的新毕业生的爆炸性增长,早期职业研究人员在合适的机构找到工作方面出现了前所未有的挑战。本研究的目的是了解学术职业转变的行为,从而推荐适合博士毕业生的机构。具体地说,我们设计了一个深层次的学习模式,以预测早期职业研究人员的职业发展并提供建议。设计建在学术/学术网络的顶峰上,其中载有关于学者和机构之间科学合作的大量信息。我们建立了一个多样化的学术网络,以便利探索职业运动的行为和学术机构的建议。我们设计了一个称为HAI(HAI(Hetergenous图形注意InfoMax))的无人监督的学习模式,将注意力和相互信息集中用于机构建议。此外,我们建议学者注意和元式关注发现若干元病理之间的隐藏关系。利用这些机制,HAI提供有条理的建议,可以解释。我们根据基线方法对真实世界的数据集进行评估。实验结果验证了我们的方法的有效性和效率。