Adaptive spectral (AS) decompositions associated with a piecewise constant function, $u$, yield small subspaces where the characteristic functions comprising $u$ are well approximated. When combined with Newton-like optimization methods, AS decompositions have proved remarkably efficient in providing at each nonlinear iteration a low-dimensional search space for the solution of inverse medium problems. Here, we derive $L^2$-error estimates for the AS decomposition of $u$, truncated after $K$ terms, when $u$ is piecewise constant and consists of $K$ characteristic functions over Lipschitz domains and a background. Numerical examples illustrate the accuracy of the AS decomposition for media that either do, or do not, satisfy the assumptions of the theory.
翻译:与片段常量函数相关的适应性光谱分解(AS), 美元, 产生小的子空间, 其中由美元构成的特性功能非常接近。 当与牛顿式优化方法相结合时, AS 分解(AS) 已证明非常有效, 在每个非线性循环中, 为反向中问题的解决办法提供了低维搜索空间 。 在这里, 我们得出了 $2 $- error 估计数, 用于 AS 分解( 美元) $2 美元, 在 美元 条件之后, 当美元是 美元 单元常数, 包括利普施茨 域域和背景上的 $ 。 数字示例说明了 AS 分解( AS) 对符合或不符合理论假设的媒体的准确性 。