We present an automatic piano transcription system that converts polyphonic audio recordings into musical scores. This has been a long-standing problem of music information processing, and recent studies have made remarkable progress in the two main component techniques: multipitch detection and rhythm quantization. Given this situation, we study a method integrating deep-neural-network-based multipitch detection and statistical-model-based rhythm quantization. In the first part, we conducted systematic evaluations and found that while the present method achieved high transcription accuracies at the note level, some global characteristics of music, such as tempo scale, metre (time signature), and bar line positions, were often incorrectly estimated. In the second part, we formulated non-local statistics of pitch and rhythmic contents that are derived from musical knowledge and studied their effects in inferring those global characteristics. We found that these statistics are markedly effective for improving the transcription results and that their optimal combination includes statistics obtained from separated hand parts. The integrated method had an overall transcription error rate of 7.1% and a downbeat F-measure of 85.6% on a dataset of popular piano music, and the generated transcriptions can be partially used for music performance and assisting human transcribers, thus demonstrating the potential for practical applications.


翻译:我们推出一个自动钢琴抄录系统,将多声调录音转换成音乐分数。这是一个长期存在的音乐信息处理问题,最近的研究在两种主要组成部分技术上取得了显著进展:多声道探测和节奏量化。鉴于这种情况,我们研究一种将深神经网络多声道探测和基于统计模型的节奏量化相结合的方法。在第一部分,我们进行了系统评价,发现目前的方法在笔记级实现了高声调,但一些全球音乐特征,如节奏标尺、米特(时间签名)和条线位置往往被错误地估算。在第二部分,我们根据音乐知识制作了非本地的音频和节奏内容统计数据,并研究了其影响,推断了这些全球特征。我们发现这些统计数据对改进抄录结果非常有效,其最佳组合包括从分离的手部分获得的统计数据。综合方法在音量级上实现了7.1%的总体抄录错误率,在流行钢琴音乐谱谱谱上采用了85.6%的下调F测量法,从而可以部分地展示人文笔记录。

0
下载
关闭预览

相关内容

【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
35+阅读 · 2020年5月4日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员