Image Captioning is a current research task to describe the image content using the objects and their relationships in the scene. To tackle this task, two important research areas converge, artificial vision, and natural language processing. In Image Captioning, as in any computational intelligence task, the performance metrics are crucial for knowing how well (or bad) a method performs. In recent years, it has been observed that classical metrics based on n-grams are insufficient to capture the semantics and the critical meaning to describe the content in an image. Looking to measure how well or not the set of current and more recent metrics are doing, in this article, we present an evaluation of several kinds of Image Captioning metrics and a comparison between them using the well-known MS COCO dataset. The metrics were selected from the most used in prior works, they are those based on $n$-grams as BLEU, SacreBLEU, METEOR, ROGUE-L, CIDEr, SPICE, and those based on embeddings, such as BERTScore and CLIPScore. For this, we designed two scenarios; 1) a set of artificially build captions with several qualities, and 2) a comparison of some state-of-the-art Image Captioning methods. Interesting findings were found trying to answer the questions: Are the current metrics helping to produce high-quality captions? How do actual metrics compare to each other? What are the metrics really measuring?


翻译:图像描述是当前用对象描述图像内容及其在现场关系的一项研究任务。 要完成这项任务, 我们有两个重要的研究领域, 人工视觉和自然语言处理。 在图像描述中, 与任何计算智能任务一样, 性能衡量对于了解一种方法的运行情况有多好( 或差) 至关重要。 近年来, 人们发现基于 n 克的古典度量不足以捕捉图像内容的语义和关键含义 。 想要测量当前和最新指标集是否正在做的很好, 文章中, 我们展示了几种类型的图像显示度量的评价, 并用众所周知的 MS COCO数据集比较它们之间的比较。 这些度量是以前工作中最常用的方法所选取的。 近年, 人们发现基于 $- ggggs的经典度指标不足以捕捉到某图像内容的语义和关键含义 。 我们设计了两种图表质量的比喻, 一种是“ 数字”, 一种是“ 数字” 和“ 数字 ” 答案 。

0
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。
【2022新书】深度学习R语言实战,第二版,568页pdf
专知会员服务
86+阅读 · 2022年10月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文 | CVPR2017有哪些值得读的Image Caption论文?
黑龙江大学自然语言处理实验室
16+阅读 · 2017年12月1日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年7月14日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文 | CVPR2017有哪些值得读的Image Caption论文?
黑龙江大学自然语言处理实验室
16+阅读 · 2017年12月1日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员