Meta-Learning algorithms for few-shot learning aim to train neural networks capable of generalizing to novel tasks using only a few examples. Early-stopping is critical for performance, halting model training when it reaches optimal generalization to the new task distribution. Early-stopping mechanisms in Meta-Learning typically rely on measuring the model performance on labeled examples from a meta-validation set drawn from the training (source) dataset. This is problematic in few-shot transfer learning settings, where the meta-test set comes from a different target dataset (OOD) and can potentially have a large distributional shift with the meta-validation set. In this work, we propose Activation Based Early-stopping (ABE), an alternative to using validation-based early-stopping for meta-learning. Specifically, we analyze the evolution, during meta-training, of the neural activations at each hidden layer, on a small set of unlabelled support examples from a single task of the target tasks distribution, as this constitutes a minimal and justifiably accessible information from the target problem. Our experiments show that simple, label agnostic statistics on the activations offer an effective way to estimate how the target generalization evolves over time. At each hidden layer, we characterize the activation distributions, from their first and second order moments, then further summarized along the feature dimensions, resulting in a compact yet intuitive characterization in a four-dimensional space. Detecting when, throughout training time, and at which layer, the target activation trajectory diverges from the activation trajectory of the source data, allows us to perform early-stopping and improve generalization in a large array of few-shot transfer learning settings, across different algorithms, source and target datasets.
翻译:用于小片段学习的元学习算法旨在培训神经网络,这种神经网络能够推广到仅使用几个实例的新任务。 早期停止对于业绩至关重要, 当模型培训达到最佳的概括性新任务分布时, 停止模式培训是关键。 梅塔- 学习的早期停止机制通常依靠从培训( 源) 数据集中提取的元校验集中标出的例子来衡量模型性能。 这在几小片的传输学习设置中是有问题的, 元测试集来自不同的目标数据集( OOD), 并且有可能随着元校验集而发生巨大的分布性转变。 在这项工作中, 我们提出“ 动作基础早期停止( ABE) ”, 这是使用基于验证的早期停止模式进行元学习的替代。 具体地说, 我们在元培训期间, 神经启动过程的演进, 从目标分配的单个任务分配的一小组不贴标签式支持示例, 这是从一个不同的目标源( OODD) 到一个极小且可以正确获取的信息。 我们的实验显示, 简单的时间结构上, 快速的运行中, 数据流流流流流流 的每个阶段的运行中, 是如何在一般阶段中, 的运行中, 的轨迹中, 的轨迹中, 将一个总的轨迹中, 的轨迹中, 将一个总的轨迹的轨迹的演演演化, 的轨迹中,, 的轨迹中,, 的演演演演演进, 在四个中, 的轨迹中, 的轨迹中, 的轨迹中, 在总的轨迹上, 的轨中, 的轨迹中, 的轨中, 在总的轨迹上, 上, 的轨迹上, 的轨迹上, 的轨迹上, 的轨迹上的演中, 的轨迹上, 的轨迹上的演中, 的轨迹上, 从一个总的轨迹上的轨迹上的轨迹上的演中, 上, 从一个总的轨迹上, 从一个总的轨迹上的轨迹上的轨迹上, 从一个总的演演演演演演演进,, 的轨迹上, 从一个总。