This paper presents a novel approach for modeling mortality rates above age 70 by proposing a mixture-based model. This model is compared to four other widely used models: the Beard, Gompertz, Makeham, and Perks models. Our model can capture the complex behavior of mortality rates at all ages, providing a more accurate representation of the data. To evaluate the performance of our model, we applied it to two countries with different data quality: Japan and Brazil. Our results show that the proposed model outperforms the other models in both countries, particularly in Japan where it obtained an absolute mean percentage error of less than 7%, while the other models presented values greater than 30%. This highlights the ability of our model to adapt to different data quality and country-specific mortality patterns. In summary, this paper presents a mixture-based model that captures the behavior of mortality rates at all ages and outperforms other widely used models in both high- and low-quality data settings. This model can improve mortality prediction and inform public health policy.
翻译:本文通过提出一种基于混合物的模型,为70岁以上死亡率建模提供了一种新的方法。 这个模型与其他四种广泛使用的模型比较: 贝尔德、贡佩茨、马凯姆和珀克斯模型。 我们的模式可以捕捉所有年龄死亡率的复杂行为,更准确地描述数据。 为了评估模型的性能,我们将其应用于两个数据质量不同的国家: 日本和巴西。 我们的结果表明,拟议的模型在这两个国家优于其他模型,特别是在日本,它获得的绝对平均百分比差差低于7%,而其他模型则提供了超过30%的值。 这突出显示了我们模型适应不同数据质量和具体国家死亡率模式的能力。 总之,本文提出了一个基于混合物的模式,它能够捕捉所有年龄的死亡率行为,在高、低质量数据环境中优于其他广泛使用的模型。 这个模型可以改进死亡率预测,并为公共卫生政策提供信息。