While anonymity networks like Tor aim to protect the privacy of their users, they are vulnerable to traffic analysis attacks such as Website Fingerprinting (WF) and Flow Correlation (FC). Recent implementations of WF and FC attacks, such as Tik-Tok and DeepCoFFEA, have shown that the attacks can be effectively carried out, threatening user privacy. Consequently, there is a need for effective traffic analysis defense. There are a variety of existing defenses, but most are either ineffective, incur high latency and bandwidth overhead, or require additional infrastructure. As a result, we aim to design a traffic analysis defense that is efficient and highly resistant to both WF and FC attacks. We propose DeTorrent, which uses competing neural networks to generate and evaluate traffic analysis defenses that insert 'dummy' traffic into real traffic flows. DeTorrent operates with moderate overhead and without delaying traffic. In a closed-world WF setting, it reduces an attacker's accuracy by 60.5%, a reduction 9.5% better than the next-best padding-only defense. Against the state-of-the-art FC attacker, DeTorrent reduces the true positive rate for a $10^{-4}$ false positive rate to about .30, which is less than half that of the next-best defense. We also demonstrate DeTorrent's practicality by deploying it alongside the Tor network and find that it maintains its performance when applied to live traffic.


翻译:虽然Tor等匿名网络的目的是保护用户的隐私,但它们很容易受到诸如网站指纹和流程关联(FC)等交通分析攻击的伤害。最近对WF和FC攻击(如Tik-Tok和DeepCoFFEA)的实施表明,袭击可以有效进行,威胁用户隐私。因此,需要有效的交通分析防御。现有防御系统有多种,但大多数防御系统不是无效的,是高延时空和带宽管理,或需要更多基础设施。因此,我们的目标是设计高效和高度抵抗FFFFF和FC攻击的交通分析防御系统。我们建议DeTorrent使用相互竞争的神经网络来生成和评估交通分析防御系统,将“软性”交通插入实际交通流。DeTorrent在封闭世界的环境下运作着中和不拖延交通。在封闭世界的环境下,攻击者的准确度降低60.5%,减少9.5%比下个最佳防线要高。相对于FC攻击和FC攻击的状态,我们提议使用相互竞争的交通网络的运行率要降低10美元。</s>

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员