This paper presents an approximate wireless communication scheme for federated learning (FL) model aggregation in the uplink transmission. We consider a realistic channel that reveals bit errors during FL model exchange in wireless networks. Our study demonstrates that random bit errors during model transmission can significantly affect FL performance. To overcome this challenge, we propose an approximate communication scheme based on the mathematical and statistical proof that machine learning (ML) model gradients are bounded under certain constraints. This bound enables us to introduce a novel encoding scheme for float-to-binary representation of gradient values and their QAM constellation mapping. Besides, since FL gradients are error-resilient, the proposed scheme simply delivers gradients with errors when the channel quality is satisfactory, eliminating extensive error-correcting codes and/or retransmission. The direct benefits include less overhead and lower latency. The proposed scheme is well-suited for resource-constrained devices in wireless networks. Through simulations, we show that the proposed scheme is effective in reducing the impact of bit errors on FL performance and saves at least half the time than transmission with error correction and retransmission to achieve the same learning performance. In addition, we investigated the effectiveness of bit protection mechanisms in high-order modulation when gray coding is employed and found that this approach considerably enhances learning performance.


翻译:近似无线通信用于联邦学习的研究。本文提出了一种用于联邦学习模型聚合的近似无线通信方案。我们考虑一种现实中的通信信道,在无线网络中,模型交换过程中会出现比特错误。研究表明,在模型传输过程中的随机比特错误可以显著影响联邦学习的性能。为了克服这个挑战,我们提出了一种基于数学和统计证明的机器学习模型梯度的边界的近似通信方案。这个边界使我们能够引入一个新的编码方法,将梯度值从浮点数编码成二进制数并进行QAM星座图映射。此外,由于联邦学习梯度具有容错性,当信道质量良好时,所提出的方案只是在带误差的情况下传递梯度,从而消除繁琐的纠错码和/或重传。这直接带来的好处包括开销更小、延迟更低。该方案适用于无线网络中的资源受限设备。通过模拟,我们展示了所提出的方案在减少比特错误对联邦学习性能的影响方面是有效的,并且在达到相同学习性能的情况下可以节省至少一半的时间,同时我们还研究了灰度编码在高阶调制中的比特保护机制的有效性,并发现这种方法能够显著提高学习性能。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员