Traffic forecasting is an important application of spatiotemporal series prediction. Among different methods, graph neural networks have achieved so far the most promising results, learning relations between graph nodes then becomes a crucial task. However, improvement space is very limited when these relations are learned in a node-to-node manner. The challenge stems from (1) obscure temporal dependencies between different stations, (2) difficulties in defining variables beyond the node level, and (3) no ready-made method to validate the learned relations. To confront these challenges, we define legitimate traffic causal variables to discover the causal relation inside the traffic network, which is carefully checked with statistic tools and case analysis. We then present a novel model named Graph Spatial-Temporal Network Based on Causal Insight (GT-CausIn), where prior learned causal information is integrated with graph diffusion layers and temporal convolutional network (TCN) layers. Experiments are carried out on two real-world traffic datasets: PEMS-BAY and METR-LA, which show that GT-CausIn significantly outperforms the state-of-the-art models on mid-term and long-term prediction.
翻译:交通量预测是时空系列预测的一个重要应用。 在不同的方法中,图形神经网络已经取得了最有希望的结果,学习图形节点之间的关系成为一项关键任务。然而,如果以节点到节点的方式学习这些关系,改进的空间非常有限。挑战来自:(1) 不同站点之间的时间依赖模糊,(2) 确定节点水平以外的变量有困难,(3) 没有现成的方法来验证所学关系。为了应对这些挑战,我们界定了合法的交通因果变量,以发现交通网络内部的因果关系,通过统计工具和案例分析仔细检查。然后我们提出了一个名为基于Causal Insight(GT-Caus In)的图像空间-时空网络(GT-Caus In)的新模型,在这个模型中,先前学到的因果关系信息与图形扩散层和时变网络(TCN)层相结合。实验是在两个真实世界交通数据集上进行的:PEMS-BAY和METR-LA, 这表明GT-COS在中长期预测中明显低于状态模型。