Lattice-skin structures composed of a thin-shell skin and a lattice infill are widespread in nature and large-scale engineering due to their efficiency and exceptional mechanical properties. Recent advances in additive manufacturing, or 3D printing, make it possible to create lattice-skin structures of almost any size with arbitrary shape and geometric complexity. We propose a novel gradient-based approach to optimising both the shape and infill of lattice-skin structures to improve their efficiency further. The respective gradients are computed by fully considering the lattice-skin coupling while the lattice topology and shape optimisation problems are solved in a sequential manner. The shell is modelled as a Kirchhoff-Love shell and analysed using isogeometric subdivision surfaces, whereas the lattice is modelled as a pin-jointed truss. The lattice consists of many cells, possibly of different sizes, with each containing a small number of struts. We propose a penalisation approach akin to the SIMP (solid isotropic material with penalisation) method for topology optimisation of the lattice. Furthermore, a corresponding sensitivity filter and a lattice extraction technique are introduced to ensure the stability of the optimisation process and to eliminate scattered struts of small cross-sectional areas. The developed topology optimisation technique is suitable for non-periodic, non-uniform lattices. For shape optimisation of both the shell and the lattice, the geometry of the lattice-skin structure is parameterised using the free-form deformation technique. The topology and shape optimisation problems are solved in an iterative, sequential manner. The effectiveness of the proposed approach and the influence of different algorithmic parameters are demonstrated with several numerical examples.


翻译:由薄壳皮肤和拉特板装饰构成的拉特板结构在性质和大规模工程上十分广泛, 由于其效率和特殊的机械特性, 大型工程也十分广泛。 添加剂制造或 3D 印刷的最新进展使得有可能创建几乎任何大小的拉特板结构, 任意的形状和几何复杂度。 我们提出一种新的梯度方法, 优化拉特板结构的形状和填充, 以进一步提高其效率。 各自的梯度是通过充分考虑拉特板结构的变异性组合来计算的, 而拉特板表层和形状的变色问题则以顺序方式解决。 贝壳是仿制成的基尔赫霍夫- 爱普特版外观外观的外观外观, 并使用等相的亚化亚化亚表层外观外观外观的外观结构。 我们提议一种与SIMP( 以不固定的不固定的表面结构) 的变异的变形方法, 以及平面的变形技术的变形法化方法, 保证了稳定性平面的变形技术的变现过程。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(OpenCV/Keras)用手势控制的计算器
机器学习研究会
3+阅读 · 2018年3月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(OpenCV/Keras)用手势控制的计算器
机器学习研究会
3+阅读 · 2018年3月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员