Cross Z-complementary pairs (CZCPs) are a special kind of Z-complementary pairs (ZCPs) having zero autocorrelation sums around the in-phase position and end-shift position, also having zero cross-correlation sums around the end-shift position. It can be utilized as a key component in designing optimal training sequences for broadband spatial modulation (SM) systems over frequency selective channels. In this paper, we focus on designing new CZCPs with large cross Z-complementary ratio $(\mathrm{CZC}_{\mathrm{ratio}})$ by exploring two promising approaches. The first one of CZCPs via properly cascading sequences from a Golay complementary pair (GCP). The proposed construction leads to $(28L,13L)-\mathrm{CZCPs}$, $(28L,13L+\frac{L}{2})-\mathrm{CZCPs}$ and $(30L,13L-1)-\mathrm{CZCPs}$, where $L$ is the length of a binary GCP. Besides, we emphasize that, our proposed CZCPs have the largest $\mathrm{CZC}_{\mathrm{ratio}}=\frac{27}{28}$, compared with known CZCPs but no-perfect CZCPs in the literature. Specially, we proposed optimal binary CZCPs with $(28,13)-\mathrm{CZCP}$ and $(56,27)-\mathrm{CZCP}$. The second one of CZCPs based on Boolean functions (BFs), and the construction of CZCPs have the largest $\mathrm{CZC}_{\mathrm{ratio}}=\frac{13}{14}$, compared with known CZCPs but no-perfect CZCPs in the literature.


翻译:跨Z补充配对 (CZCP) 是一种特殊的 Z-补充配对 {CZCP$}, 其在中阶段位置和末班位置周围的自动反热值为零, 其在末班位置周围的交叉反热值为零。 它可以用作设计宽带空间调制(SM)系统在频率选择性频道上的最佳培训序列的关键组成部分。 在本文中, 我们侧重于设计具有大跨Z补充比率的新的CZCP$ {CM{C- CP$ 。 通过探索两种有希望的方法 。 首个CZCP在Golay 补充配对(GCP) 上进行适当的剖析序列 。 提议的构造可以达到$( 28, 13L)\ 美元空间调制系统在频率选择频道上进行最佳培训序列 。 $( 28L) 美元在Z- 美元, 在 C- c- COM 中, 以 $( 30, 13- CCP) 特殊 {C} 。 与已知的硬 磁盘 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员