We introduce monoidal width as a measure of the difficulty of decomposing morphisms in monoidal categories. For graphs, we show that monoidal width and two variations capture existing notions, namely branch width, tree width and path width. We propose that monoidal width: (i) is a promising concept that, while capturing known measures, can similarly be instantiated in other settings, avoiding the need for ad-hoc domain-specific definitions and (ii) comes with a general, formal algebraic notion of decomposition using the language of monoidal categories.
翻译:我们引入单潮宽度, 以衡量单潮类别中分解形态的难度。 对于图表, 我们显示单潮宽度和两种变异性能够捕捉到现有的概念, 即分支宽度、 树宽度和路径宽度。 我们建议单潮宽度:(一) 是一个很有希望的概念, 在捕捉已知的测量方法的同时, 也可以在其他环境中同时进行回溯, 避免需要特定域定义, (二) 伴随着一个使用单潮类别语言进行分解的一般、 正式的代数概念 。