Compared to other language tasks, applying pre-trained language models (PLMs) for search ranking often requires more nuances and training signals. In this paper, we identify and study the two mismatches between pre-training and ranking fine-tuning: the training schema gap regarding the differences in training objectives and model architectures, and the task knowledge gap considering the discrepancy between the knowledge needed in ranking and that learned during pre-training. To mitigate these gaps, we propose Pre-trained, Prompt-learned and Pre-finetuned Neural Ranker (P$^3$ Ranker). P$^3$ Ranker leverages prompt-based learning to convert the ranking task into a pre-training like schema and uses pre-finetuning to initialize the model on intermediate supervised tasks. Experiments on MS MARCO and Robust04 show the superior performances of P$^3$ Ranker in few-shot ranking. Analyses reveal that P$^3$ Ranker is able to better accustom to the ranking task through prompt-based learning and retrieve necessary ranking-oriented knowledge gleaned in pre-finetuning, resulting in data-efficient PLM adaptation. Our code is available at \url{https://github.com/NEUIR/P3Ranker}.


翻译:与其他语言任务相比,应用预先培训的语言模型(PLM)进行搜索排名往往需要更多的细微差别和培训信号。在本文件中,我们确定并研究培训前和排名微调之间的两种不匹配之处:培训目标和模式架构差异的培训计划差距,以及考虑到排名所需知识与培训前知识之间的差异的任务知识差距。为了缩小这些差距,我们提议采用预先培训、迅速学习和事先调整的Neuror Ranger(P$3$ Ranger) 。P$3CRer利用快速学习的杠杆,将排序任务转换成预培训前任务,如Schema,并使用预调整来启动中期监督任务模式。关于MS MARCO和Robust04的实验显示了低调P$3的优异性表现。分析显示,PN3$PNCER能够通过快速学习和检索在PIurth3/NKER校前调整中必要的排序导向知识,从而在数据效率/PLMRMRQ}我们的数据/PLAWADRADRDR/CRQ 中可以使用的数据节调制。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员