Although the block Gibbs sampler for the Bayesian graphical LASSO proposed by Wang (2012) has been widely applied and extended to various shrinkage priors in recent years, it has a less noticeable but possibly severe disadvantage that the positive definiteness of a precision matrix in the Gaussian graphical model is not guaranteed in each cycle of the Gibbs sampler. Specifically, if the dimension of the precision matrix exceeds the sample size, the positive definiteness of the precision matrix will be barely satisfied and the Gibbs sampler will almost surely fail. In this paper, we propose modifying the original block Gibbs sampler so that the precision matrix never fails to be positive definite by sampling it exactly from the domain of the positive definiteness. As we have shown in the Monte Carlo experiments, this modification not only stabilizes the sampling procedure but also significantly improves the performance of the parameter estimation and graphical structure learning. We also apply our proposed algorithm to a graphical model of the monthly return data in which the number of stocks exceeds the sample period, demonstrating its stability and scalability.


翻译:尽管Wang(2012年)提议的Bayesian图形LASSO的Gibbs块取样器近年来被广泛应用,并扩大到各种缩缩水前科,但是,Gaussian图形模型中精确矩阵的积极确定性在Gibs取样器的每个周期都得不到保证,这是一个不那么明显但可能十分严重的不利之处。具体地说,如果精确矩阵的尺寸超过样本大小,精确矩阵的确定性将几乎难以达到,Gibs取样器几乎肯定会失败。在本文中,我们提议修改原块Gibs取样器,以便精确矩阵从正确定性领域完全取样,从而永远不会失去确定性。正如我们在Monte Carlo实验中所显示的那样,这一修改不仅稳定了取样程序,而且大大改进了参数估计和图形结构学习的性能。我们还对每月回报数据的图形模型应用了我们提议的算法,其中储存数量超过取样期,显示了其稳定性和可缩缩放性。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员