Gaze estimation is of great importance to many scientific fields and daily applications, ranging from fundamental research in cognitive psychology to attention-aware mobile systems. While recent advancements in deep learning have yielded remarkable successes in building highly accurate gaze estimation systems, the associated high computational cost and the reliance on large-scale labeled gaze data for supervised learning place challenges on the practical use of existing solutions. To move beyond these limitations, we present FreeGaze, a resource-efficient framework for unsupervised gaze representation learning. FreeGaze incorporates the frequency domain gaze estimation and the contrastive gaze representation learning in its design. The former significantly alleviates the computational burden in both system calibration and gaze estimation, and dramatically reduces the system latency; while the latter overcomes the data labeling hurdle of existing supervised learning-based counterparts, and ensures efficient gaze representation learning in the absence of gaze label. Our evaluation on two gaze estimation datasets shows that FreeGaze can achieve comparable gaze estimation accuracy with existing supervised learning-based approach, while enabling up to 6.81 and 1.67 times speedup in system calibration and gaze estimation, respectively.


翻译:对许多科学领域和日常应用而言,Gaze估计对于许多科学领域和日常应用都非常重要,从认知心理学基础研究到关注移动系统。虽然最近深层学习的进展在建立高度准确的视觉估计系统方面取得了显著成功,但相关的高计算成本和对大规模标记的凝视数据对监督学习的依赖对实际使用现有解决方案提出了挑战。为了超越这些局限性,我们介绍了FreeGaze,这是一个不受监督的视觉代表学习的资源高效框架。FreeGaze在其设计中纳入了频域眼视估计和对比的视觉代表学习。前者大大减轻了系统校准和视觉估计中的计算负担,并大大降低了系统的内嵌度;而后者克服了标明现有受监督的学习对应方存在障碍的数据,确保在没有视觉标签的情况下高效的视觉表现学习。我们对两个视觉估计数据集的评价表明,FreeGaze可以利用现有的以监督学习为基础的方法实现可比的视觉估计准确度,同时使系统校准和视觉估计的速度分别达到6.81和1.67倍。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月25日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员