This paper presents a data-driven framework to improve the trustworthiness of US tax preparation software systems. Given the legal implications of bugs in such software on its users, ensuring compliance and trustworthiness of tax preparation software is of paramount importance. The key barriers in developing debugging aids for tax preparation systems are the unavailability of explicit specifications and the difficulty of obtaining oracles. We posit that, since the US tax law adheres to the legal doctrine of precedent, the specifications about the outcome of tax preparation software for an individual taxpayer must be viewed in comparison with individuals that are deemed similar. Consequently, these specifications are naturally available as properties on the software requiring similar inputs provide similar outputs. Inspired by the metamorphic testing paradigm, we dub these relations metamorphic relations. In collaboration with legal and tax experts, we explicated metamorphic relations for a set of challenging properties from various US Internal Revenue Services (IRS) publications including Publication 596 (Earned Income Tax Credit), Schedule 8812 (Qualifying Children/Other Dependents), and Form 8863 (Education Credits). We focus on an open-source tax preparation software for our case study and develop a randomized test-case generation strategy to systematically validate the correctness of tax preparation software guided by metamorphic relations. We further aid this test-case generation by visually explaining the behavior of software on suspicious instances using easy to-interpret decision-tree models. Our tool uncovered several accountability bugs with varying severity ranging from non-robust behavior in corner-cases (unreliable behavior when tax returns are close to zero) to missing eligibility conditions in the updated versions of software.


翻译:本文提出了一个数据驱动框架,以提高美国税务准备软件系统的可信度。鉴于此类软件中的错误对其用户的法律影响,确保税收准备软件的合规性和可信度至关重要。在为税务准备系统开发调试辅助工具方面的主要障碍是缺乏明确的规格和难以获得甲骨文。我们假设,由于美国税法遵循了先例的法律理论,必须把个人纳税人税务准备软件结果的规格与被认为相似的个人相比较。因此,这些规格自然可以提供,因为需要类似投入的软件的属性提供了类似的产出。受变换性测试模式的启发,我们将这些关系归为变换式关系。我们与法律和税务专家合作,为一系列具有挑战性的财产复制了变式关系,这些出版物包括第596号出版物(收入抵免税)、第8812号表(在儿童/其他可变离异性退税时,以及第8863号表格(教育抵减)等出版物。我们侧重于一个公开源税准备软件源的编制软件软件,用于我们案例研究中的易变换行为,并系统地通过系统测试生成的系统测试软件,来验证我们的一系列税变现的系统化的税变换行为。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员