We study a variant of quantum circuit complexity, the binding complexity: Consider a $n$-qubit system divided into two sets of $k_1$, $k_2$ qubits each ($k_1\leq k_2$) and gates within each set are free; what is the least cost of two-qubit gates ''straddling'' the sets for preparing an arbitrary quantum state, assuming no ancilla qubits allowed? Firstly, our work suggests that, without making assumptions on the entanglement spectrum, $\Theta(2^{k_1})$ straddling gates always suffice. We then prove any $\text{U}(2^n)$ unitary synthesis can be accomplished with $\Theta(4^{k_1})$ straddling gates. Furthermore, we extend our results to multipartite systems, and show that any $m$-partite Schmidt decomposable state has binding complexity linear in $m$, which hints its multi-separable property. This result not only resolves an open problem posed by Vijay Balasubramanian, who was initially motivated by the ''Complexity=Volume'' conjecture in quantum gravity, but also offers realistic applications in distributed quantum computation in the near future.
翻译:我们研究的是量子电路复杂度的变体, 约束性复杂度: 考虑一个美元- qubit 系统, 分为两组, 每组1美元, 2美元/ 2美元, 每组内每组内2个门是免费的; 两组“ 分解” 门“ 分解”, 用于编制任意量子状态的设置的最低成本, 假设不容许 ancilla qubit? 首先, 我们的工作表明, 在不对缠绕频谱作出假设的情况下, $\ Theta ( 2 ⁇ k_ 1} ) 跨边界大门永远足够。 然后我们证明任何美元/ text{ U} ( 2 } ) 和 每组内2 个门内的门都是免费的; 两组门的“ 分解” 门“ 分解 ” 最小的成本。 此外, 我们把我们的结果扩大到多部分的系统, 并表明, 任何单位的施密度精度精度的状态都有线性线性, 这暗示着它的多可分离属性。 。 这不仅解决了 Vijay Bala Submanian 所引发的开放的问题, 。