The generalized Lanczos trust-region (GLTR) method is one of the most popular approaches for solving large-scale trust-region subproblem (TRS). Recently, Jia and Wang [Z. Jia and F. Wang, \emph{SIAM J. Optim., 31 (2021), pp. 887--914}] considered the convergence of this method and established some {\it a prior} error bounds on the residual, the solution and the Largrange multiplier. In this paper, we revisit the convergence of the GLTR method and try to improve these bounds. First, we establish a sharper upper bound on the residual. Second, we give a new bound on the distance between the approximation and the exact solution, and show that the convergence of the approximation has nothing to do with the associated spectral separation. Third, we present some non-asymptotic bounds for the convergence of the Largrange multiplier, and define a factor that plays an important role on the convergence of the Largrange multiplier. Numerical experiments demonstrate the effectiveness of our theoretical results.
翻译:Lanczos信任区(GLTR)的通用方法(GLTR)是解决大规模信任区子问题最流行的方法之一。最近,Jia和Wang[Z. Jia和F. Wang,\emph{SIAM J. Optim., 31 (2021), pp.887-914}]审议了这一方法的趋同,并确立了关于剩余物、解决办法和拉格朗乘数的一些前置错误界限。在本文中,我们重新审视GLTR方法的趋同,并试图改进这些界限。首先,我们在剩余物上方设置了一个更鲜明的界限。第二,我们对近似值和确切解决办法之间的距离设定了新的界限,并表明近似与相关的光谱分离没有任何关系。第三,我们为拉格朗系数的趋同提出了一些非抽象的界限,并确定了一个在拉格朗乘数的趋同方面起重要作用的因素。数字实验证明了我们的理论结果的有效性。