Online collision-free trajectory generation within a shared workspace is fundamental for most multi-robot applications. However, many widely-used methods based on model predictive control (MPC) lack theoretical guarantees on the feasibility of underlying optimization. Furthermore, when applied in a distributed manner without a central coordinator, deadlocks often occur where several robots block each other indefinitely. Whereas heuristic methods such as introducing random perturbations exist, no profound analyses are given to validate these measures. Towards this end, we propose a systematic method called infinite-horizon model predictive control with deadlock resolution. The MPC is formulated as a convex optimization over the proposed modified buffered Voronoi with warning band. Based on this formulation, the condition of deadlocks is formally analyzed and proven to be analogous to a force equilibrium. A detection-resolution scheme is proposed, which can effectively detect deadlocks online before they even happen, and once detected, utilizes an adaptive resolution scheme to resolve deadlocks, with theoretical guarantee on performance. In addition, the proposed planning algorithm ensures recursive feasibility of the underlying optimization at each time step under both input and model constraints, is concurrent for all robots, and requires only local communication. Comprehensive simulation and experiment studies are conducted over large-scale multi-robot systems. Significant improvements on success rate are reported, in comparison with other state-of-the-art methods and especially in crowded and high-speed scenarios.
翻译:在一个共享的工作空间内产生在线无碰撞轨迹是大多数多机器人应用的基础。然而,基于模型预测控制(MPC)的许多广泛使用的方法缺乏对基本优化可行性的理论保障。此外,如果在没有中央协调者的情况下以分布方式应用,在几个机器人彼此无限期地阻塞的情况下,往往会出现僵局。虽然存在采用随机扰动等超常方法,但没有深入分析来验证这些措施。为此,我们提出了一个系统化方法,称为无限偏松模型预测控制,以打破僵局的方式进行预测控制。根据模型预测控制(MPC),许多广泛使用的方法缺乏对基本优化的理论保证。根据这一公式,对僵局的状况进行正式分析,并证明类似于武力平衡。提出了检测解决方案,在发现这些方法之前,可以有效地在网上发现僵局,一旦发现,则利用适应性解决方案来解决僵局,同时从理论上保证绩效。此外,拟议的规划算法确保了在投入和模型约束下每一步都进行修正Vornoi(Vornoi)和警告波罗诺(Vornoi)的拟议优化的同步优化。基于这一公式,对僵局的状况进行正式分析,并证明,僵局的状况与压力的状态相似地进行类似地进行类似地试验,特别要求进行大规模试验,并且进行大规模进行其他的升级试验,并且只进行大规模试验。在高速度式的机械系统进行其他的升级,只进行大规模的试验,只要求进行大规模试验,只进行大规模试验。