This paper explores the use of factor graphs as an inference and analysis tool for Bayesian peer-to-peer decentralized data fusion. We propose a framework by which agents can each use local factor graphs to represent relevant partitions of a complex global joint probability distribution, thus allowing them to avoid reasoning over the entirety of a more complex model and saving communication as well as computation cost. This allows heterogeneous multi-robot systems to cooperate on a variety of real world, task oriented missions, where scalability and modularity are key. To develop the initial theory and analyze the limits of this approach, we focus our attention on static linear Gaussian systems in tree-structured networks and use Channel Filters (also represented by factor graphs) to explicitly track common information. We discuss how this representation can be used to describe various multi-robot applications and to design and analyze new heterogeneous data fusion algorithms. We validate our method in simulations of a multi-agent multi-target tracking and cooperative multi-agent mapping problems, and discuss the computation and communication gains of this approach.
翻译:本文探讨了要素图作为巴伊西亚同侪分散化数据集成的推论和分析工具的使用。我们提出了一个框架,各代理商可借此利用本地要素图代表复杂的全球共同概率分布的相关分区,从而使它们避免对整个更为复杂的模型进行推理,并节省通信和计算成本。这使多种多机器人系统能够在各种现实世界、以任务为导向的任务任务上开展合作,其中,可缩放性和模块性是关键。为了发展初步理论并分析这一方法的局限性,我们集中关注树木结构网络中的静态直线高斯系统,并使用频道过滤器(也以要素图为代表)明确跟踪共同信息。我们讨论如何利用这一表述来描述各种多机器人应用,并设计和分析新的混合数据集成算法。我们验证了我们模拟多试剂多目标跟踪和合作性多剂绘图的方法,并讨论这一方法的计算和通信收益。