The transition towards data-centric AI requires revisiting data notions from mathematical and implementational standpoints to obtain unified data-centric machine learning packages. Towards this end, this work proposes unifying principles offered by categorical and cochain notions of data, and discusses the importance of these principles in data-centric AI transition. In the categorical notion, data is viewed as a mathematical structure that we act upon via morphisms to preserve this structure. As for cochain notion, data can be viewed as a function defined in a discrete domain of interest and acted upon via operators. While these notions are almost orthogonal, they provide a unifying definition to view data, ultimately impacting the way machine learning packages are developed, implemented, and utilized by practitioners.


翻译:向以数据为中心的AI的过渡要求从数学和执行角度重新审视数据概念,以获得统一的以数据为中心的机器学习包。为此,这项工作提出了由数据绝对和连锁概念提出的统一原则,并讨论了这些原则在以数据为中心的AI转型中的重要性。在绝对概念中,数据被视为一种数学结构,我们通过形态学来保持这一结构。就连锁概念而言,数据可被视为在离散的感兴趣领域界定的功能,并通过操作者采取行动。虽然这些概念几乎是垂直的,但它们提供了一个统一的定义来查看数据,最终影响到从业者开发、执行和使用机器学习包的方式。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
19+阅读 · 2018年10月25日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
相关论文
Arxiv
38+阅读 · 2021年8月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
19+阅读 · 2018年10月25日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员