We study how the learning rate affects the performance of a relaxed randomized Kaczmarz algorithm for solving $A x \approx b + \varepsilon$, where $A x =b$ is a consistent linear system and $\varepsilon$ has independent mean zero random entries. We derive a scheduled learning rate which optimizes a bound on the expected error that is sharp in certain cases; in contrast to the exponential convergence of the standard randomized Kaczmarz algorithm, our optimized bound involves the reciprocal of the Lambert-$W$ function of an exponential.
翻译:我们研究学习率如何影响一个放松随机化的卡茨马兹算法的性能,该算法用于解决美元A x\approx b + varepsilon$,其中,美元A x = b美元是一个连贯的线性系统,美元Varepsilon$具有独立的平均零随机条目。我们得出一个定时学习率,根据某些情况下的预期误差优化一个界限;与标准的随机化卡茨马兹算法的指数趋同相反,我们的优化约束涉及一个指数性Lambert-W$函数的对等性。