The advent of MiniApps, operating within larger SuperApps, has revolutionized user experiences by offering a wide range of services without the need for individual app downloads. However, this convenience has raised significant privacy concerns, as these MiniApps often require access to sensitive data, potentially leading to privacy violations. Our research addresses the critical gaps in the analysis of MiniApps' privacy practices, especially focusing on WeChat MiniApps in the Android ecosystem. Despite existing privacy regulations and platform guidelines, there is a lack of effective mechanisms to safeguard user privacy fully. We introduce MiniScope, a novel two-phase hybrid analysis approach, specifically designed for the MiniApp environment. This approach overcomes the limitations of existing static analysis techniques by incorporating dynamic UI exploration for complete code coverage and accurate privacy practice identification. Our methodology includes modeling UI transition states, resolving cross-package callback control flows, and automated iterative UI exploration. This allows for a comprehensive understanding of MiniApps' privacy practices, addressing the unique challenges of sub-package loading and event-driven callbacks. Our empirical evaluation of over 120K MiniApps using MiniScope demonstrates its effectiveness in identifying privacy inconsistencies. The results reveal significant issues, with 5.7% of MiniApps over-collecting private data and 33.4% overclaiming data collection. These findings emphasize the urgent need for more precise privacy monitoring systems and highlight the responsibility of SuperApp operators to enforce stricter privacy measures.
翻译:暂无翻译