The seminal work of Cohen and Peng introduced Lewis weight sampling to the theoretical computer science community, yielding fast row sampling algorithms for approximating $d$-dimensional subspaces of $\ell_p$ up to $(1+\epsilon)$ error. Several works have extended this important primitive to other settings, including the online coreset, sliding window, and adversarial streaming models. However, these results are only for $p\in\{1,2\}$, and results for $p=1$ require a suboptimal $\tilde O(d^2/\epsilon^2)$ samples. In this work, we design the first nearly optimal $\ell_p$ subspace embeddings for all $p\in(0,\infty)$ in the online coreset, sliding window, and the adversarial streaming models. In all three models, our algorithms store $\tilde O(d^{1\lor(p/2)}/\epsilon^2)$ rows. This answers a substantial generalization of the main open question of [BDMMUWZ2020], and gives the first results for all $p\notin\{1,2\}$. Towards our result, we give the first analysis of "one-shot'' Lewis weight sampling of sampling rows proportionally to their Lewis weights, with sample complexity $\tilde O(d^{p/2}/\epsilon^2)$ for $p>2$. Previously, this scheme was only known to have sample complexity $\tilde O(d^{p/2}/\epsilon^5)$, whereas $\tilde O(d^{p/2}/\epsilon^2)$ is known if a more sophisticated recursive sampling is used. The recursive sampling cannot be implemented online, thus necessitating an analysis of one-shot Lewis weight sampling. Our analysis uses a novel connection to online numerical linear algebra. As an application, we obtain the first one-pass streaming coreset algorithms for $(1+\epsilon)$ approximation of important generalized linear models, such as logistic regression and $p$-probit regression. Our upper bounds are parameterized by a complexity parameter $\mu$ introduced by [MSSW2018], and we show the first lower bounds showing that a linear dependence on $\mu$ is necessary.


翻译:科恩和彭的原始工作将 Lewis 重量取样引入了理论计算机科学界, 生成了快速行取样算法, 用于约等于美元( 1 ⁇ ) 美元( 1 ⁇ ) 的维基次空间 。 一些作品将这一重要的原始范围扩展至其他设置, 包括在线核心集、 滑动窗口 和对抗流模型 。 然而, 这些结果只针对 $\\ ⁇ 1 美元( 1美元), 美元( p= 1 美元) 需要低于最佳的 $ O ( d ⁇ 2/\ eeplon2) 的样本 美元。 在这项工作中, 我们设计了第一个接近最佳的 $( pell_ p$) 的维基次空间嵌入 $( $( 1 ⁇ ) 美元 的基底层 。 当我们第一次通过 ODMUW\\ 202 的深度分析, 开始的结果是 以 美元( =xxx) 的直升 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
0+阅读 · 2022年9月11日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员