We consider model-free reinforcement learning (RL) in non-stationary Markov decision processes. Both the reward functions and the state transition functions are allowed to vary arbitrarily over time as long as their cumulative variations do not exceed certain variation budgets. We propose Restarted Q-Learning with Upper Confidence Bounds (RestartQ-UCB), the first model-free algorithm for non-stationary RL, and show that it outperforms existing solutions in terms of dynamic regret. Specifically, RestartQ-UCB with Freedman-type bonus terms achieves a dynamic regret bound of $\widetilde{O}(S^{\frac{1}{3}} A^{\frac{1}{3}} \Delta^{\frac{1}{3}} H T^{\frac{2}{3}})$, where $S$ and $A$ are the numbers of states and actions, respectively, $\Delta>0$ is the variation budget, $H$ is the number of time steps per episode, and $T$ is the total number of time steps. We further present a parameter-free algorithm named Double-Restart Q-UCB that does not require prior knowledge of the variation budget. We show that our algorithms are \emph{nearly optimal} by establishing an information-theoretical lower bound of $\Omega(S^{\frac{1}{3}} A^{\frac{1}{3}} \Delta^{\frac{1}{3}} H^{\frac{2}{3}} T^{\frac{2}{3}})$, the first lower bound in non-stationary RL. Numerical experiments validate the advantages of RestartQ-UCB in terms of both cumulative rewards and computational efficiency. We demonstrate the power of our results in examples of multi-agent RL and inventory control across related products.


翻译:我们考虑在非静止的 Markov 决策程序中不使用模型的强化学习 {RL 。 只要累积变化不超过某些变化预算, 奖励功能和国家过渡功能可以随时间任意变化 。 我们提议重新启动高信任库(重新启动Q-UCB), 这是非静止RL的第一个不使用模型的算法, 并显示它以动态的遗憾来比现有的解决方案高。 具体地说, 以自由型的奖金条件重新启动 Q- OCB, 实现全方位telde{O}(S\frac{1}3 ⁇ 3} A\frac{N1}3}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员