We consider model-free reinforcement learning (RL) in non-stationary Markov decision processes. Both the reward functions and the state transition functions are allowed to vary arbitrarily over time as long as their cumulative variations do not exceed certain variation budgets. We propose Restarted Q-Learning with Upper Confidence Bounds (RestartQ-UCB), the first model-free algorithm for non-stationary RL, and show that it outperforms existing solutions in terms of dynamic regret. Specifically, RestartQ-UCB with Freedman-type bonus terms achieves a dynamic regret bound of $\widetilde{O}(S^{\frac{1}{3}} A^{\frac{1}{3}} \Delta^{\frac{1}{3}} H T^{\frac{2}{3}})$, where $S$ and $A$ are the numbers of states and actions, respectively, $\Delta>0$ is the variation budget, $H$ is the number of time steps per episode, and $T$ is the total number of time steps. We further present a parameter-free algorithm named Double-Restart Q-UCB that does not require prior knowledge of the variation budget. We show that our algorithms are \emph{nearly optimal} by establishing an information-theoretical lower bound of $\Omega(S^{\frac{1}{3}} A^{\frac{1}{3}} \Delta^{\frac{1}{3}} H^{\frac{2}{3}} T^{\frac{2}{3}})$, the first lower bound in non-stationary RL. Numerical experiments validate the advantages of RestartQ-UCB in terms of both cumulative rewards and computational efficiency. We demonstrate the power of our results in examples of multi-agent RL and inventory control across related products.
翻译:我们考虑在非静止的 Markov 决策程序中不使用模型的强化学习 {RL 。 只要累积变化不超过某些变化预算, 奖励功能和国家过渡功能可以随时间任意变化 。 我们提议重新启动高信任库(重新启动Q-UCB), 这是非静止RL的第一个不使用模型的算法, 并显示它以动态的遗憾来比现有的解决方案高。 具体地说, 以自由型的奖金条件重新启动 Q- OCB, 实现全方位telde{O}(S\frac{1}3 ⁇ 3} A\frac{N1}3}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\