We propose the GENERIC formalism informed neural networks (GFINNs) that obey the symmetric degeneracy conditions of the GENERIC formalism. GFINNs comprise two modules, each of which contains two components. We model each component using a neural network whose architecture is designed to satisfy the required conditions. The component-wise architecture design provides flexible ways of leveraging available physics information into neural networks. We prove theoretically that GFINNs are sufficiently expressive to learn the underlying equations, hence establishing the universal approximation theorem. We demonstrate the performance of GFINNs in three simulation problems: gas containers exchanging heat and volume, thermoelastic double pendulum and the Langevin dynamics. In all the examples, GFINNs outperform existing methods, hence demonstrating good accuracy in predictions for both deterministic and stochastic systems.
翻译:我们建议GENERIC正规化信息神经网络(GFINNs)遵守GENENERIC正规化的对称退化条件。GFINNs由两个模块组成,每个模块包含两个组成部分。我们使用神经网络对每个组件进行模型,而神经网络的设计是用来满足所需条件的。构件型建筑设计提供了将现有物理信息运用到神经网络的灵活方法。我们从理论上证明GFINNs有足够的表达性来学习基本方程,从而建立了通用近似理论。我们展示了GFINNs在三个模拟问题中的表现:气体容器交换热量和体积、热力双曲和兰格文动力。在所有例子中,GFINNs都超越了现有方法,从而显示了确定性和切视系统预测的准确性。