Requirements driven search-based testing (also known as falsification) has proven to be a practical and effective method for discovering erroneous behaviors in Cyber-Physical Systems. Despite the constant improvements on the performance and applicability of falsification methods, they all share a common characteristic. Namely, they are best-effort methods which do not provide any guarantees on the absence of erroneous behaviors (falsifiers) when the testing budget is exhausted. The absence of finite time guarantees is a major limitation which prevents falsification methods from being utilized in certification procedures. In this paper, we address the finite-time guarantees problem by developing a new stochastic algorithm. Our proposed algorithm not only estimates (bounds) the probability that falsifying behaviors exist, but also it identifies the regions where these falsifying behaviors may occur. We demonstrate the applicability of our approach on standard benchmark functions from the optimization literature and on the F16 benchmark problem.


翻译:事实证明,要求驱动的基于搜索的测试(又称伪造)是发现网络物理系统中错误行为的一个实用而有效的方法。尽管在伪造方法的性能和适用性方面不断改进,但它们都有一个共同的特征。也就是说,它们是最好的方法,不能保证在测试预算用尽时不存在错误行为(假冒者),缺乏有限时间保证是阻止在认证程序中使用伪造方法的一个主要限制。在本文中,我们通过开发新的随机算法来解决有限时间保障问题。我们提议的算法不仅估计(限制)了伪造行为存在的可能性,而且还确定了这些伪造行为可能发生的区域。我们从优化文献和F16基准问题中展示了我们关于标准基准功能的方法的适用性。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
6+阅读 · 2019年6月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员