Stochastic simulations such as large-scale, spatiotemporal, age-structured epidemic models are computationally expensive at fine-grained resolution. We propose Interactive Neural Process (INP), a Bayesian active learning framework to proactively learn a deep learning surrogate model and accelerate simulation. Our framework is based on the novel integration of neural process, deep sequence model and active learning. In particular, we develop a novel spatiotemporal neural process model to mimic the simulator dynamics. Our model automatically infers the latent process which describes the intrinsic uncertainty of the simulator. This also gives rise to a new acquisition function based on the latent information gain. We design Bayesian active learning algorithms to iteratively query the simulator, gather more data, and continuously improve the model. We perform theoretical analysis and demonstrate that our approach reduces sample complexity compared with random sampling in high dimension. Empirically, we demonstrate our framework can faithfully imitate the behavior of a complex infectious disease simulator with a small number of examples, enabling rapid simulation and scenario exploration.
翻译:大规模、 时空、 年龄结构的流行病模型等智能模拟模型在精细分辨率下计算成本昂贵。 我们提出互动神经过程( INP), 这是一种巴伊西亚积极的学习框架, 以积极主动地学习深层学习替代模型并加速模拟。 我们的框架基于神经过程的新颖整合、 深序列模型和积极学习。 特别是, 我们开发了一个新颖的超时神经过程模型, 以模拟模拟模拟动态。 我们的模型自动推断出描述模拟器内在不确定性的潜在过程。 这也产生了基于潜在信息收益的新获取功能。 我们设计贝伊西亚积极学习算法, 以迭接地查询模拟器, 收集更多的数据, 并不断改进模型。 我们进行理论分析, 并证明我们的方法会降低样本的复杂性, 与高尺度的随机抽样相比。 我们的实验框架可以忠实地模仿一个复杂的传染病模拟器的行为, 并有少量的例子, 能够进行快速的模拟和情景探索 。