Byzantine-robustness has been gaining a lot of attention due to the growth of the interest in collaborative and federated learning. However, many fruitful directions, such as the usage of variance reduction for achieving robustness and communication compression for reducing communication costs, remain weakly explored in the field. This work addresses this gap and proposes Byz-VR-MARINA - a new Byzantine-tolerant method with variance reduction and compression. A key message of our paper is that variance reduction is key to fighting Byzantine workers more effectively. At the same time, communication compression is a bonus that makes the process more communication efficient. We derive theoretical convergence guarantees for Byz-VR-MARINA outperforming previous state-of-the-art for general non-convex and Polyak-Lojasiewicz loss functions. Unlike the concurrent Byzantine-robust methods with variance reduction and/or compression, our complexity results are tight and do not rely on restrictive assumptions such as boundedness of the gradients or limited compression. Moreover, we provide the first analysis of a Byzantine-tolerant method supporting non-uniform sampling of stochastic gradients. Numerical experiments corroborate our theoretical findings.


翻译:由于合作和联合学习的兴趣增加,Byz-VR-MARINA-Byz-VR-MARINA-MARINA-Byz-VR-MARINA-Byz-VR-MARINA-Byz-VR-MARINA-MYZ-VR-MARINA-BYZ-VR-ROBTINA-Byzantine-Byzantine-Byzantine-ByByzantine-ByPR-ROBITNE-R-ROBITINA-R-BR-ROBTINA-BR-BR-BR-BR-BR-BBBURTINA-BY-R-BR-BR-BR-BR-BR-BR-BR-BR-BR-BR-BR-BBR-R-BOBURTNUBTNE-R-R-R-BUBETNATIONATIONATIONATIONATIONATION-L)的兴趣日益增加增加,BE-BE-BE-BR-BR-BR-BR-BR-BR-R-BR-BR-BR-R-BR-BR-BR-BR-BR-R-R-R-BR-BR-BR-BR-BR-BR-BR-BR-BR-BR-BR-BT-BT-BT-R-BT-BT-BT-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-BIT-BIT-R-BIT-R-R-R-R-R-R-BIT-BIT-BIT-BIT-BIT-BIT-BIT-R-R-R-R-R-R-R-R-R-R-R-R-BIT-BIT-BI</s>

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2023年4月29日
Arxiv
0+阅读 · 2023年4月27日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员