The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.
翻译:在过去几年里,移动相机的作用急剧增加,导致在自动图像质量提高和RAW照片处理方面进行了越来越多的研究。在移动AI的挑战中,目标是开发一个高效端到端的AI型图像信号处理管道,以取代使用TensorFlow Lite在现代智能手机 GPUs上运行的标准移动式ISP系统。向与会者提供了大型的Fujifilm UltraIS数据集,其中包括以普通移动相机传感器和专业的102MP中型FujiFilm GFX100摄影机拍摄的数千对相照片。所产生的模型的运行时间在Scastdragon的8 Ggen 1 GPU上进行了评估,为大多数共同的深层学习操作提供了极好的加速结果。拟议解决方案与所有最近的移动GPUS兼容,能够在不到20-50毫秒的时间内处理完整的HD照片,同时取得高度忠诚的结果。本文详细说明了在这一挑战中开发的所有模型。