项目名称: Cu2ZnSnS4薄膜太阳电池异质结调控及电池性能研究

项目编号: No.61274053

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 张毅

作者单位: 南开大学

项目金额: 91万元

中文摘要: 铜锌锡硫(CZTS)因其组成元素储量丰富、环境友好,且具有高的吸收系数和理想的带隙,成为新型薄膜太阳电池吸收层的理想材料。但是,目前铜锌锡硫薄膜太阳电池的发展主要集中在吸收层材料的制备,对于构成电池的p-n异质结缺乏研究,限制了高效电池的研发。本项目通过数值模拟,优化薄膜制备工艺,掌握组分掺杂对CZTS吸收层带隙的调控,系统研究CZTS薄膜内带隙分布与器件性能之间的关系,以及CZTS与不同n-型材料构成异质结间的导带带阶,弄清CZTS薄膜电池异质结能带匹配问题;研究CZTS太阳电池中p-n异质结的界面结构及其与太阳电池的性能之间的关系。通过本项目的研究,可以弄清铜锌锡硫薄膜太阳电池的异质结结构、能带及界面等科学问题,深入认识CZTS太阳电池中p-n异质结与太阳电池性能之间的关联,丰富多元化合物薄膜太阳电池异质结理论,为研制新型高效CZTS太阳电池提供指导,推动CZTS薄膜太阳电池的发展。

中文关键词: 铜锌锡硫硒;异质结;Zn(S;O);太阳电池;

英文摘要: Cu2ZnSnS4 (CZTS) is an ideal materials as the absorber layer in thin film solar cells because of its good properties, such as notoxic, high absorption coefficients and proper energy band gap. However, the present research on CZTS solar cell is mainly focused on the film growth, and absence for the p-n heterojunction in solar cell, which is crucial for the development of CZTS solar cell with high conversion efficiency. In this proposal, the growth process of CZTS absorber is first optisized based on the simulation results to undersand the mechanics of energy band gap of CZTS adjusted by tunable composition. Then, the energy band gap engineering, including the gradient of energy band gap in CZTS absorber and the conduction band offset between CZTS and n-type semiconductor film, and their effects on the properties of solar cell is studied in detail. In addition, the interface of p-n heterojunction and the relation between the interface and properties of CZTS solar cell is also studied. By the systematic research designed in this proposal, some key scientific questions can be make clear, such as heterojunction structure of CZTS solar cell, energy band gap and interfaces. The relation between heterojunction structure of CZTS solar cell and the properties of CZTS solar cells can be get a further understand, which can

英文关键词: CZTSSe;heterojunction;Zn(O;S);solar cell;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
8+阅读 · 2021年9月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
105+阅读 · 2021年4月7日
专知会员服务
70+阅读 · 2021年3月27日
【2020新书】Python文本分析,104页pdf
专知会员服务
96+阅读 · 2020年12月23日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
8+阅读 · 2021年9月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
105+阅读 · 2021年4月7日
专知会员服务
70+阅读 · 2021年3月27日
【2020新书】Python文本分析,104页pdf
专知会员服务
96+阅读 · 2020年12月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员