Prior work on integrating text corpora with knowledge graphs (KGs) to improve Knowledge Graph Embedding (KGE) have obtained good performance for entities that co-occur in sentences in text corpora. Such sentences (textual mentions of entity-pairs) are represented as Lexicalised Dependency Paths (LDPs) between two entities. However, it is not possible to represent relations between entities that do not co-occur in a single sentence using LDPs. In this paper, we propose and evaluate several methods to address this problem, where we borrow LDPs from the entity pairs that co-occur in sentences in the corpus (i.e. with mention entity pairs) to represent entity pairs that do not co-occur in any sentence in the corpus (i.e. without mention entity pairs). We propose a supervised borrowing method, SuperBorrow, that learns to score the suitability of an LDP to represent a without-mention entity pair using pre-trained entity embeddings and contextualised LDP representations. Experimental results show that SuperBorrow improves the link prediction performance of multiple widely-used prior KGE methods such as TransE, DistMult, ComplEx and RotatE.
翻译:先前为改进知识图嵌入(KGE)而将文本公司与知识图整合成一体而开展的工作,在改进知识图嵌入(KGE)方面,对于在文本表中同时使用句子的实体来说,已经取得了良好的绩效。这些句子(从字面上提及实体 -- -- 纸面)在两个实体之间被作为词汇式依赖路径(LDPs)代表。然而,不可能在使用LDPs的单句中代表不同时使用知识图(KGOs)的实体之间的关系。在本文件中,我们提出并评价了解决这一问题的几种方法,即我们从在文中同时使用句子(例如提到实体对子)的对子中共同使用LDPs(LDPs)的对子中借用LDPs(LDPs)。这些句子(从字面上提及实体 -- -- 纸面上提及实体 -- -- 纸面图)作为两个实体(LDPsuricalization)中不共同使用任何句子(即不提及实体对子)的对子。我们提出了一种受监督的借款方法,即Superborbrowrowvorowtal),以便学会使用预先嵌入内实体和背景化LDP的对子公司,学习是否代表一个无感化LDPs。实验结果显示,从而改进了对子公司对子。我们变式的预变式的预变式的预测,并改进了多种变式,我们变式,我们变式变式的变式的变式,我们变式,我们变式变式变式变式,我们变式变式变式变式,我们式,我们式变式式式式式式式式式式式式式式式式式式式式式式式式式式式式式的预测。