Moving target shadows among video synthetic aperture radar (Video-SAR) images are always interfered by low scattering backgrounds and cluttered noises, causing poor moving target shadow detection-tracking performance. To solve this problem, this letter proposes a shadow-background-noise 3D spatial de-composition method named SBN-3D-SD to boost shadow saliency for better Video-SAR moving target shadow detection-tracking performance.
翻译:视频合成孔径雷达(Video-SAR)图像中移动的目标阴影总是受到分散背景和杂乱噪音的干扰,造成移动目标影子探测跟踪性能差。为解决这一问题,本信建议采用名为SBN-3D-SD的影子后地噪音3D空间分解法,以提升影子显著性,促进更好的视频合成孔径雷达移动目标影子探测性能。