Concerns for the privacy of communication is widely discussed in research and overall society. For the public financial infrastructure of blockchains, this discussion encompasses the privacy of transaction data and its broadcasting throughout the network. To tackle this problem, we transform a discrete-time protocol for contact networks over infinite trees into a computer network protocol for peer-to-peer networks. Peer-to-peer networks are modeled as organically growing graphs. We show that the distribution of shortest paths in such a network can be modeled using a normal distribution $\mathcal{N}(\mu,\sigma^2).$ We determine statistical estimators for $\mu,\sigma$ via multivariate models. The model behaves logarithmic over the number of nodes n and proportional to an inverse exponential over the number of added edges k. These results facilitate the computation of optimal forwarding probabilities during the dissemination phase for optimal privacy in a limited information environment.
翻译:在研究和整个社会中广泛讨论了对通信隐私的关注。对于供应链的公共金融基础设施,这一讨论包括交易数据的隐私和整个网络的广播。为了解决这一问题,我们将无穷树上联系网络的离散时间协议转换为同侪网络的计算机网络协议。同侪网络以有机增长的图形为模型。我们显示,在这种网络中最短路径的分布可以使用正常分布的$\mathcal{N}(\mu,\sigma%2)来模拟。我们通过多变量模型确定$\mu,\\sigma$的统计估计值。模型对节点数进行对数对数值的对数,与增加边数的反指数成比例。这些结果有助于计算在有限信息环境中最佳隐私传播阶段的最佳传输概率。