We consider the statistical inference for noisy incomplete 1-bit matrix. Instead of observing a subset of real-valued entries of a matrix M, we only have one binary (1-bit) measurement for each entry in this subset, where the binary measurement follows a Bernoulli distribution whose success probability is determined by the value of the entry. Despite the importance of uncertainty quantification to matrix completion, most of the categorical matrix completion literature focus on point estimation and prediction. This paper moves one step further towards the statistical inference for 1-bit matrix completion. Under a popular nonlinear factor analysis model, we obtain a point estimator and derive its asymptotic distribution for any linear form of M and latent factor scores. Moreover, our analysis adopts a flexible missing-entry design that does not require a random sampling scheme as required by most of the existing asymptotic results for matrix completion. The proposed estimator is statistically efficient and optimal, in the sense that the Cramer-Rao lower bound is achieved asymptotically for the model parameters. Two applications are considered, including (1) linking two forms of an educational test and (2) linking the roll call voting records from multiple years in the United States senate. The first application enables the comparison between examinees who took different test forms, and the second application allows us to compare the liberal-conservativeness of senators who did not serve in the senate at the same time.


翻译:我们考虑的是杂音不全的1位矩阵的统计推论。我们没有观察一个矩阵M的一组实际估价条目,而是对这一子中每个条目只进行一个二进制(1位)测量,其二进制测量遵循伯努利分布法,其成功概率由条目值决定;尽管对矩阵的完成必须进行定量统计,但大部分绝对矩阵完成文献侧重于点估测和预测;本文件朝着完成1位基准矩阵的统计推论迈出了一步。在一个受欢迎的非线性要素分析模型下,我们得到了一个点估测器,并得出了对M和潜在要素分数的任何线性形式的零食用分布。此外,我们的分析采用了灵活的缺失输入设计,该设计不要求按照大多数现有测试结果的随机抽样方法完成矩阵。提议的估算器在统计上既有效又最优化,即模型参数的低约束是无选择性地实现的。我们考虑了两种应用程序,包括:(1) 将教育测试和潜在要素分数的任何线性形式联系起来。此外,我们的分析采用了不要求按多数现有测试结果进行随机抽样抽样调查,从而将不同的投票记录与不同表格联系起来。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Bootstrapping the error of Oja's Algorithm
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月25日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员