Compiling commonsense knowledge is traditionally an AI topic approached by manual labor. Recent advances in web data processing have enabled automated approaches. In this demonstration we will showcase three systems for automated commonsense knowledge base construction, highlighting each time one aspect of specific interest to the data management community. (i) We use Quasimodo to illustrate knowledge extraction systems engineering, (ii) Dice to illustrate the role that schema constraints play in cleaning fuzzy commonsense knowledge, and (iii) Ascent to illustrate the relevance of conceptual modelling. The demos are available online at https://quasimodo.r2.enst.fr, https://dice.mpi-inf.mpg.de and ascent.mpi-inf.mpg.de.
翻译:收集普通知识传统上是人工劳动处理的AI专题,网络数据处理的最近进展使自动化方法得以实现。在这个示范中,我们将展示三种系统用于自动建立普通知识库,每次强调数据管理界具体感兴趣的一个方面。 (一) 我们用Quasimodo来说明知识提取系统工程,(二) 骰子来说明系统制约在清理模糊普通知识方面发挥的作用,以及(三) 说明概念建模的相关性。演示品可在以下网址查阅:https://qusimodo.r2.enst.fr、https://dice.mpi-inf.mpg.de和ascent.mpi-inf.mpg.de。