Depth completion involves recovering a dense depth map from a sparse map and an RGB image. Recent approaches focus on utilizing color images as guidance images to recover depth at invalid pixels. However, color images alone are not enough to provide the necessary semantic understanding of the scene. Consequently, the depth completion task suffers from sudden illumination changes in RGB images (e.g., shadows). In this paper, we propose a novel three-branch backbone comprising color-guided, semantic-guided, and depth-guided branches. Specifically, the color-guided branch takes a sparse depth map and RGB image as an input and generates color depth which includes color cues (e.g., object boundaries) of the scene. The predicted dense depth map of color-guided branch along-with semantic image and sparse depth map is passed as input to semantic-guided branch for estimating semantic depth. The depth-guided branch takes sparse, color, and semantic depths to generate the dense depth map. The color depth, semantic depth, and guided depth are adaptively fused to produce the output of our proposed three-branch backbone. In addition, we also propose to apply semantic-aware multi-modal attention-based fusion block (SAMMAFB) to fuse features between all three branches. We further use CSPN++ with Atrous convolutions to refine the dense depth map produced by our three-branch backbone. Extensive experiments show that our model achieves state-of-the-art performance in the KITTI depth completion benchmark at the time of submission.
翻译:深度完成需要从稀薄的地图和 RGB 图像中恢复一个密密密的深度地图。 最近的方法侧重于使用彩色图像作为在无效像素中恢复深度的指导图像。 但是, 光彩图像不足以提供对现场必要的语义理解。 因此, 深度完成任务会受到 RGB 图像( 例如, 阴影) 的突然光化变化的影响。 在本文中, 我们建议建立一个由颜色导导、 语义导、 深度导的三支柱脊柱。 具体地说, 彩色导分支以稀薄的深度地图和 RGB 图像作为输入, 并生成彩色深度, 包括现场的颜色提示( 例如, 对象边界界限) 。 彩色导分支的深度预测密度深度图与语义图像和稀薄的深度图一起被传递给语义导导出, 深度图的深度图中, 深度图中, 深度图中, 深度导和深度深度深度图中, 深度深度图中, 深度深度图中, 深度深度深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 和深度, 深度, 和深度, 深度, 深度, 和深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度,, 深度, 深度,, 深度, 深度,, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度, 深度,,, 深度, 深度, 深度,,,, 深度,