Though the state-of-the architectures for semantic segmentation, such as HRNet, demonstrate impressive accuracy, the complexity arising from their salient design choices hinders a range of model acceleration tools, and further they make use of operations that are inefficient on current hardware. This paper demonstrates that a simple encoder-decoder architecture with a ResNet-like backbone and a small multi-scale head, performs on-par or better than complex semantic segmentation architectures such as HRNet, FANet and DDRNets. Naively applying deep backbones designed for Image Classification to the task of Semantic Segmentation leads to sub-par results, owing to a much smaller effective receptive field of these backbones. Implicit among the various design choices put forth in works like HRNet, DDRNet, and FANet are networks with a large effective receptive field. It is natural to ask if a simple encoder-decoder architecture would compare favorably if comprised of backbones that have a larger effective receptive field, though without the use of inefficient operations like dilated convolutions. We show that with minor and inexpensive modifications to ResNets, enlarging the receptive field, very simple and competitive baselines can be created for Semantic Segmentation. We present a family of such simple architectures for desktop as well as mobile targets, which match or exceed the performance of complex models on the Cityscapes dataset. We hope that our work provides simple yet effective baselines for practitioners to develop efficient semantic segmentation models.
翻译:尽管像 HRNet 这样的语义分解结构的状态结构显示了令人印象深刻的准确性,但由于其突出的设计选择所产生的复杂性阻碍了一系列模型加速工具,而且它们还利用了当前硬件效率低下的操作。 本文表明,一个简单的编码器解码器结构,其主干网和小型多级首饰具有ResNet类似的主干和小型多级首饰。 一个简单的编码器解码器结构,其运行与复杂的语义分解结构如HRNet、FANet或DDRNet相比,是否在平行或更好。 将图像分类设计的深脊柱用于语义分解任务,从而导致分化结果。 由于这些主干骨的接收范围要小得多,而且费用也低得多。 在诸如 HRNet 、 DIDSNet 网络 和 FAFNet 等工程中推出的各种设计选择都隐含着一个大为有效的网络主干网的网络。 自然会问,如果一个简单的编码解码- 解码结构, 如果由具有更大有效可接受性的骨质模型组成, 我们不用低效的操作,例如 变相交错的平流操作。 我们展示了简单和廉价的平流结构的平流操作的平坦的平流,那么可以提供简单的平坦的平坦的平坦的平坦的平坦的平坦的平流的平流的平流的平流的平流的平流的平流, 。