We introduce a novel deep learning method for detection of individual trees in urban environments using high-resolution multispectral aerial imagery. We use a convolutional neural network to regress a confidence map indicating the locations of individual trees, which are localized using a peak finding algorithm. Our method provides complete spatial coverage by detecting trees in both public and private spaces, and can scale to very large areas. In our study area spanning five cities in Southern California, we achieved an F-score of 0.735 and an RMSE of 2.157 m. We used our method to produce a map of all trees in the urban forest of California, indicating the potential for our method to support future urban forestry studies at unprecedented scales.
翻译:我们采用一种新的深层次学习方法,利用高分辨率多光谱空中图像探测城市环境中的个别树木;我们使用进化神经网络,以倒退显示个别树木位置的信任图,这些树木是使用峰值查找算法局部的;我们的方法通过在公共和私人空间探测树木提供完整的空间覆盖,可以扩大到非常大的地区;我们在南加利福尼亚州五个城市的研究地区,我们取得了0.735个F芯和2.157米RME。我们使用我们的方法绘制了加利福尼亚城市森林中所有树木的地图,表明我们的方法有可能以前所未有的规模支持未来的城市林业研究。