In the second part of this series, we use the Lagrange multiplier approach proposed in the first part \cite{CheS21} to construct efficient and accurate bound and/or mass preserving schemes for a class of semi-linear and quasi-linear parabolic equations. We establish stability results under a general setting, and carry out an error analysis for a second-order bound preserving scheme with a hybrid spectral discretization in space. We apply our approach to several typical PDEs which preserve bound and/or mass, also present ample numerical results to validate our approach.


翻译:在本系列的第二部分,我们使用第一部分中提议的拉格朗梯乘数法,为一类半线性和准线性抛物线性方程制定高效和准确的约束和/或大规模保护计划。我们在一般情况下建立稳定结果,并对带有多光谱分解于空间的第二等级分解保护计划进行误差分析。我们采用一些典型的保有约束和/或质量的PDE方法,同时也为验证我们的方法提供了充分的数字结果。

0
下载
关闭预览

相关内容

在数学优化中,拉格朗日乘数法是一种用于寻找受等式约束的函数的局部最大值和最小值的策略(即,必须满足所选变量值必须完全满足一个或多个方程式的条件)。它以数学家约瑟夫·路易斯·拉格朗日命名。基本思想是将受约束的问题转换为某种形式,以便仍可以应用无约束问题的派生检验。函数的梯度与约束的梯度之间的关系很自然地导致了原始问题的重构,即拉格朗日函数。
专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
27+阅读 · 2021年7月11日
【硬核书】Linux核心编程|Linux Kernel Programming,741页pdf
专知会员服务
79+阅读 · 2021年3月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【ICLR2020】五篇Open代码的GNN论文
专知会员服务
48+阅读 · 2019年10月2日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月15日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员