We study flow scheduling under node capacity constraints. We are given capacitated nodes and an online sequence of jobs, each with a release time and a demand to be routed between two nodes. A schedule specifies which jobs are routed in each step, guaranteeing that the total demand on a node in any step is at most its capacity. A key metric in this scenario is response time: the time between a job's release and its completion. Prior work shows no un-augmented algorithm is competitive for average response time, and that a constant factor competitive ratio is achievable with augmentation exceeding 2 (Dinitz-Moseley Infocom 2020). For maximum response time, the best known result is a 2-competitive algorithm with a augmentation 4 (Jahanjou et al SPAA 2020). We improve these bounds under various response time objectives. We show that, without resource augmentation, the best competitive ratio for maximum response time is $\Omega(n)$, where $n$ is the number of nodes. Our Proportional Allocation algorithm uses $(1+\varepsilon)$ resource augmentation to achieve a $(1/\varepsilon)$-competitive ratio in the setting with general demands and capacities, and splittable jobs. Our Batch Decomposition algorithm is $2$-competitive (resp., optimal) for maximum response time using resource augmentation 2 (resp., 4) in the setting with unit demands and capacities, and unsplittable jobs. We also derive bounds for the simultaneous approximation of average and maximum response time metrics.


翻译:在节能限制下,我们研究流动时间安排。 我们得到的是有能力的节点和在线工作序列。 每个节点都有释放时间, 要求在两个节点之间排列。 时间表指定了每个步骤的路线, 保证每个步骤对节点的总需求最大程度上是其能力。 这个假设情景中的一个关键衡量标准是反应时间: 工作发布与完成之间的时间。 先前的工作显示, 未强化的算法在平均响应时间上没有竞争力, 并且随着增长超过2( Dinitz- Moseley Infcom 2020), 可以实现一个不变的系数竞争比率。 对于最大响应时间, 已知的最佳结果是2 - 竞争性算法, 最大响应时间( Jahanjou 和 al SPA 2020) 。 我们显示, 没有资源增强, 最大响应时间的最佳竞争比率是 $(n) 美元, 美元是节点数。 我们比例分配算的算也使用 $( 1- varepslon) 资源递增量, 实现 美元( 1/\\ sal salalbalbal) reservial real real) respal resprespresprespresprespresp resprespresprestiquelation resmlation resmlational restime restime restique restime res res res restime) res res restime restime restique resm restime restique restique restique restique res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res resticolpolp res res res res res res res res resm res res res resm res res res res res restial res res res

0
下载
关闭预览

相关内容

SPAA:ACM Symposium on Parallelism in Algorithms and Architectures。 Explanation:算法与体系结构并行性学术讨论会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/spaa/
专知会员服务
50+阅读 · 2020年12月14日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
专知会员服务
61+阅读 · 2020年3月4日
已删除
将门创投
5+阅读 · 2019年9月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员