In our recent work we found a surprising breakdown of symmetry conservation: using standard numerical discretization with very high precision the computed numerical solutions corresponding to very nice initial data may converge to completely incorrect steady states due to the gradual accumulation of machine round-off error. We solved this issue by introducing a new Fourier filter technique for solutions with certain band gap properties. To further investigate the attracting basin of steady states we classify in this work all possible bounded nontrivial steady states for the Allen-Cahn equation. We characterize sharp dependence of nontrivial steady states on the diffusion coefficient and prove strict monotonicity of the associated energy. In particular, we establish a certain self-replicating property amongst the hierarchy of steady states and give a full classification of their energies and profiles. We develop a new modulation theory and prove sharp convergence to the steady state with explicit rates and profiles.
翻译:在最近的工作中,我们发现对称保护有令人惊讶的分解:使用标准数字分解,非常精确地使用与极好的初始数据相对应的计算数字解决方案,由于机器交错错误的逐渐积累,这些计算数字解决方案可能汇合到完全不正确的稳定状态。我们通过采用新的Fourier过滤技术来解决某些波段间隔特性的问题。为了进一步调查我们在此工作中分类的稳定的州中的吸引盆地,艾伦-卡恩方程式所有可能的交错非边际稳定状态。我们把非边际稳定状态对相关能源扩散系数的高度依赖,并证明相关能源的严格单一性。特别是,我们在稳定状态的等级中建立了某种自我复制的属性,并对它们的能量和特征进行全面分类。我们开发了一种新的调制导理论,并用明确的速率和剖面与稳定状态紧密结合。