In our recent work we found a surprising breakdown of symmetry conservation: using standard numerical discretization with very high precision the computed numerical solutions corresponding to very nice initial data may converge to completely incorrect steady states due to the gradual accumulation of machine round-off error. We solved this issue by introducing a new Fourier filter technique for solutions with certain band gap properties. To further investigate the attracting basin of steady states we classify in this work all possible bounded nontrivial steady states for the Allen-Cahn equation. We characterize sharp dependence of nontrivial steady states on the diffusion coefficient and prove strict monotonicity of the associated energy. In particular, we establish a certain self-replicating property amongst the hierarchy of steady states and give a full classification of their energies and profiles. We develop a new modulation theory and prove sharp convergence to the steady state with explicit rates and profiles.


翻译:在最近的工作中,我们发现对称保护有令人惊讶的分解:使用标准数字分解,非常精确地使用与极好的初始数据相对应的计算数字解决方案,由于机器交错错误的逐渐积累,这些计算数字解决方案可能汇合到完全不正确的稳定状态。我们通过采用新的Fourier过滤技术来解决某些波段间隔特性的问题。为了进一步调查我们在此工作中分类的稳定的州中的吸引盆地,艾伦-卡恩方程式所有可能的交错非边际稳定状态。我们把非边际稳定状态对相关能源扩散系数的高度依赖,并证明相关能源的严格单一性。特别是,我们在稳定状态的等级中建立了某种自我复制的属性,并对它们的能量和特征进行全面分类。我们开发了一种新的调制导理论,并用明确的速率和剖面与稳定状态紧密结合。

0
下载
关闭预览

相关内容

专知会员服务
37+阅读 · 2021年5月14日
专知会员服务
60+阅读 · 2021年3月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月16日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年5月14日
专知会员服务
60+阅读 · 2021年3月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员